img

Publications

Publications

1Jaman N.K, Rehsi P, Henderson R.H., et al. SRD5A3-CDG: Emerging phenotypic features of an ultrarare CDG subtype. Frontiers in Genetics. 2021; 12: 737094. https://pubmed.ncbi.nlm.nih.gov/34925443/ doi: 10.3389/fgene.2021.737094
2Wang Z, Zhang Y, Wang Y, Ma X. Identification of novel cell glycolysis related gene signature predicting survival in patients with endometrial cancer. Cancer cell international. 2019;19(1):296. https://pubmed.ncbi.nlm.nih.gov/31807118/. doi: 10.1186/s12935-019-1001-0.
3Kousal B, Honzík T, Hansíková H, et al. Review of SRD5A3 disease-causing sequence variants and ocular findings in steroid 5α-reductase type 3 congenital disorder of glycosylation, and a detailed new case. Folia biologica. 2019;65(3):134-141. https://www.ncbi.nlm.nih.gov/pubmed/31638560.
4Li S, Lu T, Xu X, et al. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nature communications. 2019;10(1):1813. https://search.datacite.org/works/10.1038/s41467-019-09752-3. doi: 10.1038/s41467-019-09752-3.
5Medrano C, Vega A, Navarrete R, et al. Clinical and molecular diagnosis of non‐phosphomannomutase 2 n‐linked congenital disorders of glycosylation in spain. Clinical genetics. 2019;95(5):615-626. https://search.datacite.org/works/10.1111/cge.13508. doi: 10.1111/cge.13508.
6Medina-Cano D, Ucuncu E, Nguyen L, et al. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife. 2018;7. https://hal.archives-ouvertes.fr/hal-02347168. doi: 10.7554/eLife.38309.
7Vyshlov E, Tsoy E, Sultanov V, Trusov V, Ryabov V. Hypolipidemic and hepatoprotective effects of a polyprenol-containing drug in patients with acute coronary syndrome. Bull Exp Biol Med. 2018;165(3):319-321. https://www.ncbi.nlm.nih.gov/pubmed/29998439. doi: 10.1007/s10517-018-4159-x.
8Ng BG, Freeze HH. Perspectives on glycosylation and its congenital disorders. Trends in genetics. 2018;34(6):466-476. https://search.datacite.org/works/10.1016/j.tig.2018.03.002. doi: 10.1016/j.tig.2018.03.002.
9Kazeminasab S, Najmabadi H, Kahrizi K. Intellectual disability and ataxia: Genetic collisions. Archives of Iranian medicine. 2018;21(1):29. https://www.ncbi.nlm.nih.gov/pubmed/29664668.
10Sagami H, Swiezewska E, Shidoji Y. The history and recent advances in research of polyprenol and its derivatives. Bioscience, Biotechnology, and Biochemistry: Special Issue: Recent advances in isoprenoid studies. 2018;82(6):947-955. http://www.tandfonline.com/doi/abs/10.1080/09168451.2017.1411775. doi: 10.1080/09168451.2017.1411775.
11Khan AO. Early-onset retinal dystrophy and chronic dermatitis in a girl with an undiagnosed congenital disorder of glycosylation (SRD5A3-CDG). Ophthalmic Genetics. 2018;39(5):628-630. http://www.tandfonline.com/doi/abs/10.1080/13816810.2018.1498529. doi: 10.1080/13816810.2018.1498529.
12Sánchez P, Sánchez P, Serrano-Falcón C, et al. 5α-reductase isozymes and aromatase mRNA levels in plucked hair from young women with female pattern hair loss. Arch Dermatol Res. 2018;310(1):77-83. https://www.ncbi.nlm.nih.gov/pubmed/29185104. doi: 10.1007/s00403-017-1798-0.
13Zhang W, Li Q, Deyssenroth M, et al. Timing of prenatal exposure to trauma and altered placental expressions of HPA-axis genes and genes driving neurodevelopment. Journal of neuroendocrinology. 2018;30(4):e12581. https://www.openaire.eu/search/publication?articleId=od_______267::c4ca78ed8c04e9b7d1c5ea542a841a21. doi: 10.1111/jne.12581.
14Gupta N, Verma G, Kabra M, Bijarnia-Mahay S, Ganapathy A. Identification of a case of SRD5A3-congenital disorder of glycosylation (CDG1Q) by exome sequencing. Indian Journal of Medical Research. 2018;147(4):422-426. http://www.ijmr.org.in/article.asp?issn=0971-5916;year=2018;volume=147;issue=4;spage=422;epage=426;aulast=Gupta;type=0. doi: 10.4103/ijmr.IJMR_820_16.
15Bastaki F, Bizzari S, Hamici S, et al. Single-center experience of N-linked congenital disorders of glycosylation with a summary of molecularly characterized cases in arabs. Annals of human genetics. 2018;82(1):35-47. https://search.datacite.org/works/10.1111/ahg.12220. doi: 10.1111/ahg.12220.
16Pérez-Cerdá C, Girós ML, Serrano M, et al. A population-based study on congenital disorders of protein N- and combined with O-glycosylation experience in clinical and genetic diagnosis. The Journal of pediatrics. 2017;183:170-177.e1. https://search.datacite.org/works/10.1016/j.jpeds.2016.12.060. doi: 10.1016/j.jpeds.2016.12.060.
17Hamdan FF, Myers CT, Cossette P, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. American journal of human genetics. 2017;101(5):664-685. https://search.datacite.org/works/10.1016/j.ajhg.2017.09.008. doi: 10.1016/j.ajhg.2017.09.008.
18Robic, A., Feve, K., Riquet, J., & Prunier, A. (2016). Transcript levels of genes implicated in steroidogenesis in the testes and fat tissue in relation to androstenone accumulation in fat of pubertal pigs. Domestic animal endocrinology, 57, 1–9. https://doi.org/10.1016/j.domaniend.2016.03.008
19Chen C, Huang C, Tsai Y, Hseih T, Shyr C. The genomic alterations of 5α-reductases and their inhibitor finasteride's effect in bladder cancer. Anticancer research. 2017;37(12):6893. https://www.ncbi.nlm.nih.gov/pubmed/29187470. doi: 10.21873/anticanres.12152.
20Jin, P., Wu, X., Xu, S., Zhang, H., Li, Y., Cao, Z., Li, H., & Wang, S. (2017). Differential expression of six genes and correlation with fatness traits in a unique broiler population. Saudi journal of biological sciences, 24(4), 945–949. https://doi.org/10.1016/j.sjbs.2015.04.014
21Price NP, Hartman TM, Li J, et al. Modified tunicamycins with reduced eukaryotic toxicity that enhance the antibacterial activity of β-lactams. Journal of antibiotics. 2017;70(11):1070-1077. https://www.ncbi.nlm.nih.gov/pubmed/28951601. doi: 10.1038/ja.2017.101.
22Sparks SE, Krasnewich DM. Congenital Disorders of N-Linked Glycosylation and Multiple Pathway Overview. 2005 Aug 15 [Updated 2017 Jan 12]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1332/
23Wheeler PG, Ng BG, Sanford L, et al. SRD5A3‐CDG: Expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features. American Journal of Medical Genetics Part A. 2016;170(12):3165-3171. https://onlinelibrary.wiley.com/doi/abs/10.1002/ajmg.a.37875. doi: 10.1002/ajmg.a.37875.
24Lee CL, Lee J, Na YG, Song KH. Combined effect of polymorphisms in type III 5-α reductase and androgen receptor gene with the risk of benign prostatic hyperplasia in korea. JER. 2016;12(5):504-508. http://www.earticle.net/Article.aspx?sn=286393. doi: 10.12965/jer.1632802.401.
25Tuysuz B, Pehlivan D, Özkök A, et al. Phenotypic expansion of congenital disorder of glycosylation due to SRD5A3 null mutation. JIMD reports. 2016;26:7-12. https://www.ncbi.nlm.nih.gov/pubmed/26219881. doi: 10.1007/8904_2015_478.
26Wang CZ, Yuan JJ, Li WJ, Zhang HY, Ye JZ. In Vivo and In Vitro Toxicity Evaluation of Polyprenols Extracted from Ginkgo biloba L. Leaves. Molecules. 2015;20(12):22257-22271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332170/ doi:10.3390/molecules201219839
27Chávez, B., Ramos, L., García-Becerra, R., & Vilchis, F. (2015). Hamster SRD5A3 lacks steroid 5α-reductase activity in vitro. Steroids, 94, 41–50. https://doi.org/10.1016/j.steroids.2014.11.005
28Mizuno S, Takami K, Daitoku Y, et al. Peri-implantation lethality in mice carrying megabase-scale deletion on 5qc3.3 is caused by Exoc1 null mutation. Scientific reports. 2015;5(1):13632. https://search.datacite.org/works/10.1038/srep13632. doi: 10.1038/srep13632.
29Trejter M, Jopek K, Celichowski P, Tyczewska M, Malendowicz LK, Rucinski M. Expression of estrogen, estrogen related and androgen receptors in adrenal cortex of intact adult male and female rats. Folia histochemica et cytobiologica. 2015;53(2):133-144. https://www.ncbi.nlm.nih.gov/pubmed/26122962. doi: 10.5603/FHC.a2015.0012.
30Zwadlo C, Schmidtmann E, Szaroszyk M, et al. Antiandrogenic therapy with finasteride attenuates cardiac hypertrophy and left ventricular dysfunction. Circulation (New York, N.Y.). 2015;131(12):1071-1081. https://search.datacite.org/works/10.1161/circulationaha.114.012066. doi: 10.1161/circulationaha.114.012066.
31Adam Jozwiak, Malgorzata Gutkowska, Katarzyna Gawarecka, et al. POLYPRENOL REDUCTASE2 deficiency is lethal in arabidopsis due to male sterility. The Plant cell. 2015;27(12):3336-3353. https://www.jstor.org/stable/plantcell.27.12.3336. doi: 10.1105/tpc.15.00463.
32Martyniuk, C. J., Bissegger, S., & Langlois, V. S. (2014). Reprint of "Current perspectives on the androgen 5 alpha-dihydrotestosterone (DHT) and 5 alpha-reductases in teleost fishes and amphibians". General and comparative endocrinology, 203, 10–20. https://doi.org/10.1016/j.ygcen.2014.06.011
33Wolthuis DF, Janssen MC, Cassiman D, Lefeber DJ, Morava-Kozicz E. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation. Expert Review of Molecular Diagnostics. 2014;14(2):217-224. http://www.tandfonline.com/doi/abs/10.1586/14737159.2014.890052. doi: 10.1586/14737159.2014.890052.
34Cowie AM, Wood RK, Chishti Y, Feswick A, Loughery JR, Martyniuk CJ. Transcript variability and physiological correlates in the fathead minnow ovary: Implications for sample size, and experimental power. Comparative Biochemistry and Physiology, Part B. 2015;187:22-30. http://dx.doi.org/10.1016/j.cbpb.2015.04.013. doi: 10.1016/j.cbpb.2015.04.013.
35Buczkowska A, Swiezewska E, Lefeber DJ. Genetic defects in dolichol metabolism. J Inherit Metab Dis. 2014;38(1):157-169. https://search.datacite.org/works/10.1007/s10545-014-9760-1. doi: 10.1007/s10545-014-9760-1.
36Al-Sarraj Y, Ben-Omran T, Tolefat M, Bejaoui Y, El-Shanti H, Kambouris M. A novel missense mutation in SRD5A3 causes congenital disorder of glycosylation type I (cerebello-ocular syndrome). Journal of Inborn Errors of Metabolism and Screening. 2014;2:232640981455052. https://journals.sagepub.com/doi/full/10.1177/2326409814550528. doi: 10.1177/2326409814550528.
37Barone R, Fiumara A, Jaeken J. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Seminars in Neurology. 2014;34(3):357-366. http://dx.doi.org/10.1055/s-0034-1387197. doi: 10.1055/s-0034-1387197.
38Martyniuk CJ, Bissegger S, Langlois VS. Current perspectives on the androgen 5 alpha-dihydrotestosterone (DHT) and 5 alpha-reductases in teleost fishes and amphibians. General and Comparative Endocrinology. 2013;194:264-274. https://search.datacite.org/works/10.1016/j.ygcen.2013.09.019. doi: 10.1016/j.ygcen.2013.09.019.
39O'Shaughnessy PJ, Monteiro A, Bhattacharya S, Fraser MJ, Fowler PA. Steroidogenic enzyme expression in the human fetal liver and potential role in the endocrinology of pregnancy. Molecular human reproduction. 2013;19(3):177-187. https://www.ncbi.nlm.nih.gov/pubmed/23197595. doi: 10.1093/molehr/gas059.
40Park JM, Song KH, Lim JS, Kim JW, Sul CK. Is the expression of androgen receptor protein associated with the length of AC repeats in the type III 5-α reductase gene in prostate cancer patients? Korean journal of urology. 2013;54(6):404-408. https://www.ncbi.nlm.nih.gov/pubmed/23789051. doi: 10.4111/kju.2013.54.6.404.
41Gründahl JEH, Guan Z, Rust S, et al. Life with too much polyprenol: Polyprenol reductase deficiency. Molecular Genetics and Metabolism. 2012;105(4):642-651. http://dx.doi.org/10.1016/j.ymgme.2011.12.017. doi: 10.1016/j.ymgme.2011.12.017.
42Mitsiades N, Sung CC, Schultz N, et al. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer research (Chicago, Ill.). 2012;72(23):6142-6152. https://search.datacite.org/works/10.1158/0008-5472.can-12-1335.> doi: 10.1158/0008-5472.can-12-1335.
43Millón MB, Delgado MA, Azar NB, et al. Two Argentinean Siblings with CDG-Ix: A Novel Type of Congenital Disorder of Glycosylation?. JIMD Rep. 2011;1:65-72.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509812/ doi:10.1007/8904_2011_18 .
44Züchner S, Dallman J, Wen R, et al. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. American journal of human genetics. 2011;88(2):201-206. https://search.datacite.org/works/10.1016/j.ajhg.2011.01.001. doi: 10.1016/j.ajhg.2011.01.001.
45Baudrand R, Domínguez JM, Carvajal CA, et al. Overexpression of hepatic 5 α -reductase and 11 β -hydroxysteroid dehydrogenase type 1 in visceral adipose tissue is associated with hyperinsulinemia in morbidly obese patients. Metabolism. 2011;60(12):1775-1780. https://www.clinicalkey.es/playcontent/1-s2.0-S0026049511001260. doi: 10.1016/j.metabol.2011.05.001.
46Mohamed M, Cantagrel V, Al-Gazali L, Wevers RA, Lefeber DJ, Morava E. Normal glycosylation screening does not rule out SRD5A3-CDG. European journal of human genetics : EJHG. 2011;19(10):1019. https://www.narcis.nl/publication/RecordID/oai:repository.ubn.ru.nl:2066%2F98158. doi: 10.1038/ejhg.2010.260.
47Kahrizi K, Hu CH, Garshasbi M, et al. Next generation sequencing in a family with autosomal recessive kahrizi syndrome (OMIM 612713) reveals a homozygous frameshift mutation in SRD5A3. European journal of human genetics : EJHG. 2011;19(1):115-117. https://www.ncbi.nlm.nih.gov/pubmed/20700148. doi: 10.1038/ejhg.2010.132.
48Li J, Ding Z, Wang Z, et al. Androgen regulation of 5α-reductase isoenzymes in prostate cancer: Implications for prostate cancer prevention. PloS one. 2011;6(12):e28840. https://www.ncbi.nlm.nih.gov/pubmed/22194926. doi: 10.1371/journal.pone.0028840.
49Jaeken J. Congenital disorders of glycosylation (CDG): It’s (nearly) all in it. J Inherit Metab Dis. 2011;34(4):853-858. https://search.datacite.org/works/10.1007/s10545-011-9299-3. doi: 10.1007/s10545-011-9299-3.
50Zelinger L, Banin E, Obolensky A, et al. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in ashkenazi jews. American journal of human genetics. 2011;88(2):207-215. https://search.datacite.org/works/10.1016/j.ajhg.2011.01.002. doi: 10.1016/j.ajhg.2011.01.002.
51Cantagrel V, Lefeber DJ, Ng BG, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142(2):203-217. http://dx.doi.org/10.1016/j.cell.2010.06.001. doi: 10.1016/j.cell.2010.06.001.
52Morava E, Wevers RA, Cantagrel V, et al. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain. 2010;133(11):3210-3220. https://www.narcis.nl/publication/RecordID/oai:repository.ubn.ru.nl:2066%2F87761. doi: 10.1093/brain/awq261.
53Kahrizi K, Najmabadi H, Kariminejad R, et al. An autosomal recessive syndrome of severe mental retardation, cataract, coloboma and kyphosis maps to the pericentromeric region of chromosome 4. European Journal of Human Genetics. 2009;17(1):125-128. http://dx.doi.org/10.1038/ejhg.2008.159. doi: 10.1038/ejhg.2008.159.
54Uemura M, Tamura K, Chung S, et al. Novel 5α‐steroid reductase (SRD5A3, type‐3) is overexpressed in hormone‐refractory prostate cancer. Cancer Science. 2008;99(1):81-86. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1349-7006.2007.00656.x. doi: 10.1111/j.1349-7006.2007.00656.x.
55Jaeken J. Congenital disorders of glycosylation (CDG): It's all in it. J Inherit Metab Dis. 2003;26(2):99-118. https://onlinelibrary.wiley.com/doi/abs/10.1023/A:1024431131208. doi: 10.1023/A:1024431131208.
56Fouad Mansour M, Pelletier M, Tchernof A. Characterization of 5α-reductase activity and isoenzymes in human abdominal adipose tissues. Journal of Steroid Biochemistry and Molecular Biology. 2016;161:45-53. http://dx.doi.org/10.1016/j.jsbmb.2016.02.003. doi: 10.1016/j.jsbmb.2016.02.003.
57Taylor RL, Arno G, Poulter JA, et al. Association of steroid 5α-reductase type 3 congenital disorder of glycosylation with early-onset retinal dystrophy. JAMA ophthalmology. 2017;135(4):339-347. http://dx.doi.org/10.1001/jamaophthalmol.2017.0046. doi: 10.1001/jamaophthalmol.2017.0046.
58Dallner, G., & Sindelar, P. J. (2000). Regulation of ubiquinone metabolism. Free radical biology & medicine, 29(3-4), 285–294. https://doi.org/10.1016/s0891-5849(00)00307-5
59Kean EL. The dolichol pathway in the retina and its involvement in the glycosylation of rhodopsin. Biochimica et biophysica acta. General subjects. 1999;1473(2-3):272-285. https://search.datacite.org/works/10.1016/s0304-4165(99)00198-1. doi: 10.1016/s0304-4165(99)00198-1.
60Keller RK. Squalene synthase inhibition alters metabolism of nonsterols in rat liver. Biochimica et biophysica acta. 1996;1303(3):169. https://www.ncbi.nlm.nih.gov/pubmed/8908150.
61Thelin A, Peterson E, Hutson JL, McCarthy AD, Ericsson J, Dallner G. Effect of squalestatin 1 on the biosynthesis of the mevalonate pathway lipids. Biochim Biophys Acta. 1994 Dec 8;1215(3):245-9. https://pubmed.ncbi.nlm.nih.gov/7811707/ doi: 10.1016/0005-2760(94)90049-3. PMID: 7811707
62Guthrie N, Carroll KK, Ravi K. Dolichol: Function, metabolism, and accumulation in human tissues. Biochemistry and Cell Biology. 1992;70(6):382-384. http://www.nrcresearchpress.com/doi/abs/10.1139/o92-059. doi: 10.1139/o92-059.
63Löw, P., Peterson, E., Edlund, C., Brunk, U., & Appelkvist, E. L. (1992). Nonmembrane associated dolichol in rat liver. Lipids, 27(1), 1–9. https://doi.org/10.1007/BF02537050
64Löw P, Andersson M, Edlund C, Dallner G. Effects of mevinolin treatment on tissue dolichol and ubiquinone levels in the rat. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism. 1992;1165(1):102-109. http://dx.doi.org/10.1016/0005-2760(92)90081-6. doi: 10.1016/0005-2760(92)90081-6.
65Elmberger PG, Kalen A, Lund E, et al. Effects of pravastatin and cholestyramine on products of the mevalonate pathway in familial hypercholesterolemia. Journal of Lipid Research. 1991;32(6):935. http://www.jlr.org/cgi/content/abstract/32/6/935.
66Elmberger PG, Kalen A, Brunk UT, Dallner G. Discharge of newly‐synthesized dolichol and ubiquinone with lipoproteins to rat liver perfusate and to the bile. Lipids. 1989;24(11):919-930. https://onlinelibrary.wiley.com/doi/abs/10.1007/BF02544535. doi: 10.1007/BF02544535.
67O Tollbom, C Valtersson, T Chojnacki, G Dallner. Esterification of dolichol in rat liver. Journal of Biological Chemistry. 1988;263(3):1347. http://www.jbc.org/content/263/3/1347.abstract.
68ELMBERGER PG, KALÈN A, APPELKVIST E, DALLNER G. In vitro and in vivo synthesis of dolichol and other main mevalonate products in various organs of the rat. European Journal of Biochemistry. 1987;168(1):1-11. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1432-1033.1987.tb13379.x. doi: 10.1111/j.1432-1033.1987.tb13379.x.
69Edlund C, Ericsson J, Dallner G. Changes in hepatic dolichol and dolichyl monophosphate caused by treatment of rats with inducers of the endoplasmic reticulum and peroxisomes and during ontogeny. Chemico-Biological Interactions. 1987;62(2):191-208. http://dx.doi.org/10.1016/0009-2797(87)90090-1. doi: 10.1016/0009-2797(87)90090-1.